Первый биологический 3d принтер. Создан первый серийный биопринтер


3D-печать человеческого органа, возможно, когда-то станет медицинской рутиной. В компании «3Д Биопринтинг Солюшенс» корреспондент ИТАР-ТАСС познакомился с достижениями отечественного биопринтинга.

Сотрудник Лаборатории биотехнологических исследований «3Д Биопринтинг Солюшенс»

Три этапа биопечати

В лаборатории «3Д Биопринтинг Солюшенс» под стеклом ламинара (стерильного бокса) стоит устройство, на первый взгляд напоминающее обычный 3D-принтер: механические приводы, а картриджи в виде стеклянных трубок: в них «чернила». Принтер шуршит, разворачивает картриджи, что-то выдавливается на стеклянную подставку — постепенно появляется какая-то крошечная студенистая конструкция. В данном случае элементарной каплей чернил являются не просто клетки, а так называемые тканевые сфероиды — шарики микронного размера, содержащие в себе до 2 тыс. живых клеток необходимого вида. Учитывая, что орган состоит из клеток разных видов, картриджей тоже несколько. Биобумага, то есть место закрепления биочернил, — гидрогель.

«Обычным» 3D-принтером уже мало кого удивишь: он был придуман в 1985 году американцем Чаком Холлом. По прошествии трех десятилетий 3D-принтеры производятся серийно, их главное коммерческое применение на сегодня — печать объемных прототипов чего угодно, от зданий до самолетов. Есть и бытовые модели, которые позволяют вам распечатать, например, чашку. В медицине 3D-печать тоже давно применяется: в хирургии, стоматологии для изготовления протезов или имплантов. Но поистине революционными выглядят перспективы биопечати, следующей эволюционной ступени 3D-печати. Когда человечество научится печатать живыми клетками новые органы взамен изношенных, жизнь уже никогда не будет прежней.

Российский ученый Владимир Миронов задумался в 2003 году в университете Северной Каролины: а почему бы по точно такому же принципу, по которому 3D-принтер изготавливает полимерные конструкции, не воссоздавать биологические структуры, используя клетки вместо пластика в качестве «чернил». В том же 2003 он разработал общую технологию так называемого «органпринтинга» и выпустил статью, после которой в обиход и вошли термины «биопринтер», «биобумага», «биочернила». Сегодня Владимир Миронов - научный руководитель российской компании «3Д Биопринтинг Солюшенс», резидента кластера Биомедицинских технологий Сколково.

Глазом не видно, но, как мне объясняют, биопринтер оснащен еще и источником ультрафиолета: излучение необходимо для отвердения биодеградируемого гидрогеля.

«Заметьте, мы занимаемся не выращиванием, а ассемблированием, то есть сборкой органов. Все начинается с цифровой 3D-модели органа - необходимо виртуально разрезать его на слои, задать распределение клеток разного вида в этих слоях, предусмотреть размещение полых внутри сфероидов, из которых образуются сосуды», - рассказывает Владимир Миронов. На экране видно, что именно только что на моих глазах делал принтер: на основу гидрогеля выкладывается слой шариков-сфероидов (разные цвета шариков — разные клетки), дальше опять слой гидрогеля, а на него — следующий слой сфероидов. А вот в объемной модели образовались цилиндрические отверстия — это каналы сосудов. Напечатанная конструкция — еще не готовый орган. Пока это просто именно конструкция, в которой сфероиды клеток поддерживает находящийся между ними гидрогель: отсюда и вид студня. Следующий этап — созревание ткани, то есть срастание вместе сфероидов с одновременным выведением гидрогеля. Этот процесс происходит в специальном биореакторе: небольшая камера, помещенная в поддерживающий необходимую температуру и влажность шкаф-инкубатор. «То, что вы видели, это, собственно, и есть три основных этапа сборки органа: создание цифровой модели, процесс печати и созревание. Каждый из них сам по себе — отдельное сложное направление изысканий», — замечает Владимир Миронов.
Владимир Александрович Миронов, научный руководитель Лаборатории биотехнологических исследований «3Д Биопринтинг Солюшенс»

Клеточные технологии

Понятно, что каждый орган должен печататься из клеток, подходящих конкретному пациенту. Сырьем для изготовления «биочернил» являются стволовые клетки из трех источников. Из них можно вырастить клетки для любого органа. Первый, самый доступный — жировая ткань самого пациента. Другой источник — эмбриональные стволовые клетки. Клетки эти выделяются из пуповинной крови после родов и хранятся в специальных криобанках. Но мало кто из пациентов располагает таким запасом. Поэтому существует третий источник: индуцированные стволовые клетки, то есть с высокой степенью приближения, выращенные для пациента с использование донорских клеток.

«Мы не занимаемся производством алюминия — мы строим самолеты», — Владимир Миронов находит все новые слова, объясняя, что задача лаборатории — отработать технологию по сборке органов, а не заниматься получением клеток (для этого существуют специализированные компании). Тем не менее, элементарные клетки из жировой ткани получают прямо здесь. А главное, сфероиды для экспериментов производятся прямо в лаборатории «3Д Биопринтинг Солюшенс». Мне демонстрируют пластиковые формочки с сетчатой структурой для изготовления сфероидов. Сфероид — капелька в 200−250 микрон. Под микроскопом видно, что в оболочке шарика множество клеток. Изготавливаются сфероиды и вручную (наносятся пипеткой), и с помощью специальной, созданной в «3Д Биопринтинг Солюшенс» машинки: автоматизированную технологию пока отрабатывают.

Автоматизированный микрофлюидный способ масштабирования сфероидов обеспечит биопринтер чернилами для большого тканевого конструкта: 1 тыс. сфероидов в секунду.


Сотрудник Лаборатории биотехнологических исследований «3Д Биопринтинг Солюшенс»

На пороге практики

В «3Д Биопринтинг Солюшенс» всего 16 человек, включая исследователей и менеджмент. По словам исполнительного директора Юсефа Хесуани, компания создана в начале 2013 года, и с этого времени в создание лабораторий и исследования вложены уже сотни тысяч долларов. Примечательно, что инвестором является известная сеть лабораторий «ИНВИТРО». Как заметил Владимир Миронов, обычно от идеи до готовой технологии проходит 15−30 лет. По его прогнозам, на поток имплантацию первых напечатанных на биопринтере органов (вначале сравнительно простых вроде щитовидной железы) поставят примерно в 2030 году. Простота или сложность органа определяется наличием разных «опций» вроде каналов, клапанов и прочих элементов, которые зачастую непросто напечатать. «В будущем же отделение „биопринтинга“ при каждой больнице будет таким же обычным явлением, как рентген-кабинет или операционная, — уверен Владимир Миронов. — Необходим какой-то орган — сразу на месте напечатали».

Однако монетизировать технологии биопринтинга можно, не дожидаясь этого светлого будущего. «Мы здесь создали первый российский коммерческий биопринтер — уже сегодня можем создавать такие под заказ. У нас есть заявки из разных стран», — рассказывает Юсефа Хесуани. Биопринтеры в мире стоят от $250 тыс. до $1 млн. Напечатанные на них биологические структуры используются, например, фармкомпаниями для тестирования новых препаратов. Созданный «3Д Биопринтинг Солюшенс» первый российский биопринтер отличается от иностранных аналогов, во-первых, особым решением для ультрафиолетового облучения, которое попадает на гидрогель, не задевая клетки. Во-вторых, это единственный многофункциональный принтер — сочетает все известные методы печати (клетками, сфероидами, в гидрогеле, без гидрогеля).

И, наконец, специалисты «3Д Биопринтинг Солюшенс» сделали свой принтер небольшим, то есть помещающийся в стандартный серийный ламинар — для западных аналогов обычно приходится заказывать отдельные ламинары, которые стоят по $20 тыс. «Мы собираемся заниматься совместными научными исследованиями на нашем принтере с научными группами со всего мира, работать над различными проектами, коммерциализация которых возможна, — рассказывает Юсеф Хесуани. — Выступать в качестве технологической площадки для испытаний биочернил и биобумаги, налаживать технологии биопечати, делать на заказ пробы материалов и т. д. В том числе, продавать наш автомат и формы для производства сфероидов».

Сегодня в мире меньше двух десятков компаний, имеющих готовые биопринтеры. Но мир верит в перспективы направления, которое сулит переворот в деле охраны здоровья: наладившая выпуск биопринтеров американская компания Organovo вышла в прошлом году на IPO с капитализацией $1 млрд. «Organovo отладила технологию от опытного образца до серийного за пять лет. Мы пройдем этот путь быстрее, — замечает Владимир Миронов. — В США свой последний биопринтер я делал полтора года, а здесь, в России, мы сделали за полгода. Также за полгода удалось наладить получение сфероидов: в бразильской лаборатории мы на это потратили два с половиной года».

«Проект по созданию 3D Биопринтера имеет две ступени коммерциализации. Первоначально принтер будет предлагаться для продаж science-2-science, и печать биологических тканей и моделей органов может использоваться для разработки лекарственных средств, — говорит Кирилл Каем, вице-президент фонда „Сколково“, исполнительный директор кластера биомедицинских технологий. — Мы рассчитываем, что, благодаря экосистемному эффекту, разработки „3Д Биопринтинг Солюшенс“ будут востребованы и другими резидентами „Сколково“. На второй ступени коммерциализации мы ожидаем, что успешное развитие системы позволит уже через несколько лет печатать органы для использования в клинической практике, в том числе и в Научно-исследовательском медицинском центре на территории „Сколково“. Проект „3Д Биопринтинг Солюшенс“ находится на передовом рубеже науки и практики. В мире всего пара десятков подобного рода разработок, при этом, в отличии от проекта резидента „Сколково“, достаточно большая часть из них ориентирована именно на печать тканей, а не цельных органов».

Владимир Миронов уверен, что уже в следующем году его команде удастся напечатать первый полноценный орган — щитовидную железу.

На 3D-принтерах с 2012 года возможно распечатать протезы и импланты опорно-двигательного аппарата человека. Позвонки и межпозвоночные диски из пластика и резины уже сейчас довольно хорошо освоены и постепенно осваивается более сложный уровень — печать человеческих органов и частей тела на клеточном уровне. В клиниках США, Европы и Японии, которые впереди планеты всей по научным исследованиям в медицине, прямо сейчас экспериментируют со стволовыми клетками, дабы создавать такие части тела, которые бы стопроцентно вживлялись в человеческое тело.

Чтобы вы лучше представили себе размах прогресса, можно привести данные Oxford Performance Materials, которые говорят о 450 тысячах пациентов по всему миру и инвестициях на 2 млрд. долл. Вызывает сомнение использование стволовых клеток и собственных клеток человека, однако именно такой материал полностью исключит риск отторжения. Стволовые клетки не единственный ресурс для 3D-принтера, ученые уже работают над комбинацией пластиковых волокон и живых клеток, без которой немыслимо создание по-настоящему сложных органов. Согласитесь, одно дело распечатать протез кости, а другое — части печени или сердца.

Пока полностью такие сложные органы сделать не могут, а вот, к примеру, напечатанную кожу уже вовсю используют для пересадки в ожоговом центре США. Меценаты и просто бизнесмены по всему миру вкладываются в медицинскую 3D — печать, по данным исследования Grand View Research, к 2020 году объем рынка 3D-печати будет больше миллиарда долларов, сами принтеры будут стремительно дешеветь, а там рукой подать до выпуска массовых, домашних моделей.

Какие же успехи медицина может предоставить нам на текущий момент?

Череп

В марте прошлого года хирурги заменили 75% черепа человека на пластиковый протез. Отдельные кости, вроде челюстных, «вмонтировались» в голову человека и раньше, однако таких масштабов замены еще никто не производил, тем более одноэтапно и с помощью 3D — принтера.

Позвоночник

Как уже написано выше, замена позвонков и межпозвоночных дисков дело почти освоенное, однако совсем недавно китайцы осуществили новый прорыв и сделали заменили 12-летнему мальчику позвонок с опухолью спинного мозга. Материал сделали пористым, поэтому постоянно менять позвонок не придется — он просто обрастет новой костной тканью и станет неотъемлемой частью тела.

Ухо

Бионическое ухо было создано из клеток теленка, полимерного геля и наночастиц серебра. В результате медики Принстонского университета создали настоящее «ухо будущего», которое способно воспринимать радиоволны, не улавливаемые обычным человеческим ухом. По словам ученых, они вполне могут освоить «подключение» такого уха к нейронам головного мозга, чтобы он мог воспринимать услышанное.

Зародыш

Не совсем живой орган, однако, японская компания «Fasotec» при помощи магнитно-резонансного томографа печатают в прозрачном кубе, имитирующем утробу матери, точную копию вашего будущего ребенка. Выглядит одновременно и фантастично и пугающе, но пока этот насквозь коммерческий проект нравится медикам, ведь с его помощью можно будет наблюдать за правильным развитием плода, практически держа модель ребенка в руках.

Руки

Когда уроженцу Южной Африки Ричарду Ван Есу отрубило пальцы правой руки в столярной мастерской, он нашел Айвана Оуэна из Вашингтона, который создал прототипы механических рук. Вместе они основали компанию Good Enough Tech, разработали Robohands, и освоили печать «роборук» на 3D-принтере, существенно удешевив конечную стоимость продукта. Заручившись поддержкой компании Makerbot которая одолжила им и принтеры и ресурсы для печати, эти два энтузиаста помогли уже более чем 200 людям по всему миру.

Печень

Полный орган напечатать пока не удается, ввиду его сложности, однако уже в сейчас освоена печать ткани печени из гепатоцитов, звездчатых клеток и клеток эпителия. Успех этот датирован 2013 годом, так что вполне возможен научный прорыв до «распечатки» целой печени уже в ближайшее время.

Нос

Корейские врачи и исследователи успешно восстановили искусственный нос, сделанный на 3D принтере шестилетнему мальчику. Нерха, мальчик из Монголии, родился без носа и ноздрей, что крайне редко встречается. Младенцы, родившиеся без носа, могут дышать должным образом, и большинство из них умирает в течение 12 месяцев. Врачи из Сеула, куда родители привезли мальчика, создали структуру поддержки для дыхательных путей, используя технологию 3д печати. В серии операций врачи восстановили нос Нерхи. Ноздри пациента были созданы с помощью его же костной ткани. Теперь он может нормально дышать и выглядит гораздо лучше.

«Печать» человеческих органов на 3D-принтере

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Они искусственным способом создают живую ткань, накладывая живые клетки слой за слоем. В настоящее время все биопринтеры являются экспериментальными, тем не менее, в будущем они смогут произвести революцию в медицине.

Биопринтеры могут иметь разные конфигурации, но принцип работы один: они выводят клетки из печатающей головки, которая движется влево-вправо, вперед-назад, вверх- вниз, чтобы поместить клетки куда требуется. Таким образом, за несколько часов можно получить органический объект, который состоит из огромного количества очень тонких слоев.

В дополнение к выводу клеток, большинство биопринтеров также выводят растворимый гель для поддержки и защиты клеток во время печати.

Пионеры биопечати

Несколько экспериментальных биопринтеров уже было создано. Например, в 2002 году профессор Макото Накамура увидел, что капли чернил в стандартном струйном принтере имеют примерно такой же размер, как клетки человека. После этого он адаптировал технологии и в 2008 году создал рабочую модель биопринтера, которая осуществляет печать биотрубочек, похожих на кровеносные сосуды. Профессор Накамура надеется, что со временем можно будет буквально распечатывать внутренние органы, готовые к трансплантации.

Другим пионером в области биопечати является компания Organovo, которая была создана исследовательской группой под руководством профессора Габора Форгача (Gabor Forgacs) из университета Миссури. С марта 2008 года Organovo задалась целью создать технологии биопечати функционирующих кровеносных сосудов и сердечной ткани с помощью клеток, полученных из тканей цыпленка. Эта работа опирается на прототип биопринтера с тремя печатающими головками. Первые две головки выводят кардио- и эндотелиальные клетки, в то время как третья выделяет коллагеновую основу – так называемую “био-бумагу” – для поддержки клеток во время печати.

С 2008 года Organovo работала с компанией Invetech для создания коммерческих биопринтеров под названием NovoGen MMX. В этот биопринтер загружаются биочернильные сфероиды, наполненные десятками тысяч клеток. При печати NovoGen создает первый слой на био-бумаге, изготовленной из коллагена, желатина или других гидрогелей. Затем в него вводятся (впрыскиваются) биочернильные сфероиды. Слой добавляется за слоем до создания конечного объекта.

Удивительно, но природа берет свое, и биочернильные сфероиды медленно сливаются. После этого биобумага растворяется или удаляется другим способом, и в результате получается ткань или орган, напечатанный с помощью биопринтера.

Как продемонстрировала компания Organovo, при использовании процесса биопечати не обязательно печатать орган во всех деталях. Достаточно правильно расположить соответствующие клетки в ряды, а природа сама завершит работу. Этот процесс красноречиво свидетельствует о том, что клетки, содержащиеся в биочернильных сфероидах способны перестраиваться после печати. Например, экспериментальные сосуды были напечатаны с помощью биопринтера с использованием биочернильных сфероидов и состояли из совокупности тканей эндотелия, гладких мышц и фибробластов. После того, как они были выстроены (уложены в слои) головкой биопринтера, эндотелиальные клетки мигрировали внутрь созданных кровеносных сосудов, клетки гладкой мускулатуры двигались в середину, а фибробласты мигрировали наружу без дополнительного вмешательства.

Клетки более сложных тканей и органов, например, капилляров и других внутренних структур, после печати на биопринтере также самостоятельно принимают естественное положение. Этот процесс может показаться почти волшебным. Однако, как объясняет профессор Габор Форгач (Gabor Forgacs), он ничем не отличается от процесса, который происходит в клетках эмбриона, которые “знают”, как правильно расположиться и сформировать сложные органы. Природа развила эту удивительную способность за миллионы лет. Соответствующие типы клеток, оказавшись в нужных местах, каким-то образом знают, что им делать.

В декабре 2010 года компания Organovo создала при помощи биопринтера первые кровеносные сосуды с использованием клеток, полученных от одного донора. Компания также успешно имплантировала нервы, созданные при помощи биопринтера, крысам, а эксперименты по пересадке созданных таким методом тканей человеку запланированы на 2015 год. Тем не менее, ожидается, что первое коммерческое применение биопринтеров будет заключаться в производстве простых человеческих структурных тканей для токсикологических испытаний. Это позволит ученым тестировать лекарства на моделях печени и других органах, созданных на биопринтере, тем самым снижая потребность в экспериментах на животных.

Со временем, как только испытания на человеке будут завершены, Organovo надеется, что биопринтеры будут использовать для получения трансплантатов кровеносных сосудов и применяться в операциях по шунтированию сердца. Намерения компании включают масштабную разработку технологий создания тканей и органов “на заказ”. Для реализации этой задачи исследователи в настоящее время работают над созданием крошечных механических устройств, которые могут осуществлять искусственную тренировку и, следовательно, укреплять мышечные ткани, созданные на биопринтере, до имплантирования в тело пациента.

Organovo ожидает, что первым искусственно созданным человеческим органом станет почка, так как при трансплантации эти органы наиболее востребованы. Первые почки, созданные на биопринтере, не обязательно должны выглядеть и функционировать так же, как их природные аналоги. Главное, чтобы они очищали кровь от продуктов обмена.

Регенеративная основа и кости

Еще одна группа исследований, преследующая долговременную цель получения человеческих органов “на заказ”, создала биоплоттер Envisiontec Bioplotter. Как и NovoGen MMX компании Organovo, этот биоплоттер выводит биочернильные тканевые сфероиды и вспомогательные материалы, включающие поддерживающий гидрогель, коллаген, факторы роста. Помимо этого Envisontec также может печатать более широкий спектр биоматериалов – биоразлагаемые полимеры и биокерамику, которая может быть использована для поддержки и придания формы искусственным органам. Эти материалы, созданные на биопринтере, могут быть использованы даже в качестве заменителя костей.

Команда под руководством Джереми Мао в лаборатории тканевой инженерии и регенеративной медицины Колумбийского университета (Tissue Engineering and Regenerative Medicine Lab) работает над применением биопринтеров для замены зубов и костей. В настоящее время экспериментально создана решетчатая 3D-конструкция в форме резца и имплантирована в челюстную кость крысы. Эта структура состоит из микроканалов, которые наполнены веществами, стимулирующими развитие стволовых клеток. Всего через девять недель после имплантации они вызвали рост периодонтальной связки и образование альвеолярного отростка. Со временем эти исследования могут дать людям возможность иметь новые зубы, созданные на биопринтере, или получить их путем стимуляции организма к образованию собственных новых зубов.

При проведении другого эксперимента команда Мао имплантировала решетчатую структуру, созданную на биопринтере, в район бедренной кости нескольким кроликам. И снова эта конструкция была насыщена факторами роста. Как сообщил медицинский журнал The Lancet, в течение четырех месяцев у всех кроликов образовались новые, полностью функциональные суставы вокруг этой решетки. Некоторые кролики даже начали передвигаться и переносить вес на свои новые суставы уже через несколько недель после операции. В следующем десятилетии люди, нуждающиеся в эндопротезировании, уже смогут получить новые тазобедренные суставы и другие кости, сзданные с помощью технологии биопечати. Команда из Университета штата Вашингтон недавно сообщила о результатах четырех лет работы с использованием 3D-принтера для создания костеподобного материала, который в будущем может быть использован для восстановления поврежденных человеческих костей.

Биопечать In Situ

Вышеупомянутый научный прогресс со временем позволит получать в лабораториях органы с помощью биопринтеров из собственных клеток пациента, что может привести к революции в медицине. Тем не менее, другие исследователи пытались пойти дальше и разработать методы, позволяющие распечатать новую ткань или орган непосредственно на теле. В следующем десятилетии врачи получат возможность просканировать раны и нанести слои клеток для их быстрого заживления.

В настоящее время команда исследователей биопечати под руководством Энтони Алата (Anthony Alata) в Wake Forrest School of Medicine разработала принтер, создающий кожу. В начальных экспериментах они взяли 3D-сканы тестовых травм, нанесенных мышам, и использовали эти данные для управления головкой биопринтера, которая распыляет клетки кожи, коагулянты и коллаген на рану. Результаты этого эксперимента оказались также весьма многообещающими: заживление ран проходило всего за две – три недели (примерно пять-шесть недель – в контрольной группе).

Частичное финансирование проекта создания кожи с помощью биопринтера осуществляется американскими военными, которые добиваются развития биопечати in situ, чтобы лечить раны прямо в боевых условиях. В настоящее время работа все еще находится в фазе доклинических испытаний. Алата развивает технологии, экспериментируя на свиньях. Тем не менее, испытания на людях, пострадавших от ожогов, могут быть осуществлены в течение ближайших пяти лет.

Потенциал для использования биопринтеров для восстановления поврежденных тканей и органов нашего тела in situ просто колоссальный. Возможно уже в следующем десятилетии станет возможным создание роботизированной хирургической руки с наконечником в виде головки биопринтера, которая будет проникать в тело и осуществлять восстановление повреждений на клеточном уровне. Пациентам по-прежнему нужно будет отдыхать и восстанавливать силы в течение нескольких дней, пока созданный биопринтером материал полностью станет зрелой живой тканью. Тем не менее, большинство пациентов в перспективе смогут реабилитироваться после очень серьезной операции менее, чем за неделю.

Использование в косметологии

Также как и восстановление внутренних органов биопринтером через небольшой надрез на теле пациента, применение этой технологии имеет большие перспективы и в области косметологии. Например, моут быть созданы биопринтеры для печати человеческих лиц. Они будут испарять существующие ткани и одновременно заменять их новыми клетками, создавая новое лицо по желанию самого пациента.

Даже упоминание о том, что клетки вашего лица медленно выжигают лазером и печатают на заказ наводит на мысли об ужасной пытке, которую никто никогда не захочет перенести. Однако, многие люди сегодня идут под нож, чтобы достичь гораздо меньшего косметического эффекта. Когда технология станет доступной для создания на биопринтере новых лиц, не говоря уже о принтерах, которые смогут напечатать новые мышцы без затрат времени на их тренировку, очень вероятно, что она будет востребована на рынке косметических услуг.

Материал подготовлен редакцией сайта Техножизнь на основе информации, полученной из открытых источников. Источники: www.organovo.com, www.envisiontec.de. Любое использование интернет-изданиями данного материала возможно только с указанием активной ссылки на сайт Техножизнь

Не так давно в одном британском журнале была опубликована весьма захватывающая и сенсационная статья. В данной статье говорилось о биопринтерах, с помощью которых можно будет «напечатать» некоторые человеческие органы. В связи с этой статьей хирурги, занимающиеся пересадкой человеческих органов, надеются, что когда-нибудь наступит такое время, когда они смогут получить нужный им орган для пересадки по первому своему требованию.

В настоящее время пациент, которому нужна пересадка, может по нескольку месяцев, а то и лет ждать, когда для него найдется подходящий донорский орган. Но за это время может случиться непоправимое. К сожалению, не все доживают до того момента, когда находится подходящий донор. Но с помощью искусственных органов можно было бы значительно облегчить страдания пациентов и даже сохранить многие человеческие жизни. Теперь, когда до появления первого 3D биопринтера осталось совсем немного времени, данная возможность перестала быть мечтой и попала в разряд реальности.

Первый 3D биопринтер, стоимость которого около 200 тысяч долларов, был разработан двумя сотрудничающими компаниями – это компания «Organovo» из Сан-Диего, специализация которой регенеративная медицина, и компанией «Invetech», находящейся в Мельбурне и занимающейся машиностроением. Один из основателей компании регенеративной медицины Габор Форжак разработал специальный прототип для нового 3D принтера.

В скором времени первые рабочие образцы нового принтера будут доставлены некоторым исследовательским группам, которые также изучают методы создания искусственных органов. В данное время большая часть этой трудной и кропотливой работы выполняется вручную с использованием уже существующих устройств.
По словам директора компании «Organovo» Кейта Мерфи вначале планируется создание только простых тканей, например, таких как мышцы, кожа, и маленькие участки различных кровеносных сосудов.

Однако после того как закончатся первые тестовые испытания образцов, начнется непосредственное производство кровеносных сосудов, которые в ходе операции заменят поврежденные сосуды для движения крови. После дальнейших исследований сразу можно будет приступить к производству более сложных органов.
Интересно знать, что изготовленный компанией «Organovo» 3D биопринтер работает по тому же принципу, что и обычные , который в свою очередь работает так же, как и их «собратья» обычные струйные принтеры, но только в трехмерном виде.

Такие распыляют крошечные полимерные капельки, которые в дальнейшем сплавляются вместе и образуют единую целостную структуру.
Таким образом, получается, что за каждый свой проход специальная печатающая головка способна создавать на объекте маленькую линию из полимера.
В результате такой работы предмет постепенно обретает свою окончательную форму. При помощи специальных «подмостков», которые сделаны из материалов растворимых в воде, создаются поддерживающие полости. После того, как задуманный объект будет полностью закончен, данные подмостки просто напросто смоются.
Учеными-исследователями было обнаружено, что данный подход можно смело применить и к биологическим материалам.

К примеру, если расположить рядом друг с другом маленькие участки клеток, то они начнут между собой «сплавляться». Сегодня исследуется огромный ряд различных технологий, благодаря которым из отдельных клеток можно было бы создавать человеческие органы. Одной из таких технологий является технология увеличения мышечных клеток. Данная технология достигается путем использования маленьких машин.

Невзирая на то, что технология печати человеческих органов считается новой и только – только зарождается, некоторые ученые уже сейчас могут похвастаться своими примерами создания человеческих органов. Например, Энтони Атала совместно со своими коллегами из «Wake Forest Institute for Regenerative Medicine», что находится в Северной Калифорнии, в 2006 году создал мочевые пузыри для семи своих пациентов, которые прекрасно функционируют до сих пор. О том, как это было сделано, мы расскажем в следующий раз.

Хотелось бы отметить, что биопринтер от компании «Organovo» не нуждается в поддерживающей основе и в своей работе данный принтер использует только стволовые клетки костного мозга. Не безынтересно знать, что используя разные факторы роста, есть уникальная возможность получить любые другие клетки. Несколько тысяч таких клеток могут формироваться в крошечные капельки, диаметр которых около 100-500 микрон. Такие капли отлично сохраняют форму и прекрасно подходят для печати.
Также в биопринтерах можно использовать и поддерживающие основания, и другие виды клеток. Например, клетки печени можно наносить сразу на уже сформированное основание, которое имеет форму нашей печени. Кроме того, новый биопринтер имеет весьма скромные габариты, благодаря которым его можно поставить в специальный биологический шкаф, чтобы обеспечить большую стерильность среды для печати органов.

Однако некоторые исследователи смотрят далеко вперед. По их мнению, в скором будущем могут появиться такие машины, которые смогут «напечатать» нужный орган прямо в человеческом теле. Эти слухи также подтверждает и доктор Энтони Атала. Так как именно он в данное время работает над принтером, который отсканировав определенные участки тела, где нужна пересадка кожи, сможет «напечатать» ее прямо на человеческом теле.

Кроме того, искусственные органы могут принимать различные формы, ну, по крайней мере, в самом начале. К примеру, искусственная почка, нужная для очищения крови, совсем не обязательно должна походить на ее реальную «сестру» или полностью повторять ее функционально.

Я думаю, что для людей, которые годами ждут донорские органы совсем не важно, как будут выглядеть их новые органы. Самое главное, чтобы они хорошо работали, а самочувствие людей улучшалось бы.

Первый биологический 3D-принтер, специально разработанный в расчёте на мелкосерийный, но всё же промышленный выпуск, открывает новые перспективы в области имплантации и восстановления органов и тканей. Таков результат сотрудничества американской компании Organovo и австралийской Invetech .

Вместо того чтобы пытаться вырастить в пробирке орган или кусочек ткани нужной формы и заданных свойств, куда эффективнее напечатать его на биопринтере, — полагают специалисты Organovo. В роли чернил такой аппарат использует запас культивированных клеток нужного типа (эпителиальные, соединительные, мышечные), а прецизионная печатающая головка под управлением компьютера выкладывает клетки (и вспомогательные вещества) в нужном порядке.

Собственно, первые впечатляющие опыты в данной сфере проводились ещё несколько лет назад. Над разными вариантами технологии печати органов и до сих пор работают исследователи сразу в нескольких институтах и университетах. Время от времени появляются трёхмерной биологической печати, отличающиеся нюансами в составе «чернил» и самом процессе формирования из них целой ткани.

Особенно преуспели на этой ниве профессор Габор Форгач (Gabor Forgacs) и сотрудники его лаборатории в университете Миссури, раскрывшие новые тонкости биопечати ещё в 2007 году. Мы подробно рассказывали о развитии данной технологии , её первых крупных успехах и собственно создании Organovo — её Форгач основал как раз для коммерциализации своих разработок.

В результате появилась технология NovoGen, в которой продуманы все необходимые детали биопечати как в биологической части, так и в части «железа». Первые экспериментальные принтеры для Organovo (и по её «эскизам») строила компания nScrypt . Но это были устройства, необходимые для шлифовки технологии. Теперь же настало время серийного выпуска биопринтеров.

Как сообщает Organovo в своём пресс-релизе , в мае 2009 года она выбрала в качестве промышленного партнёра компанию Invetech. Последняя обладает более чем 30-летним опытом в проектировании лабораторного и медицинского оборудования, в том числе — автоматизированного и компьютеризированного.

А в начале декабря первый экземпляр 3D-биопринтера, воплощающего в себе технологию NovoGen, был отправлен из Invetech в Organovo. Новинку отличают компактные размеры, интуитивно понятный компьютерный интерфейс, высокая степень интеграции узлов и высокая надёжность.

Новый принтер обладает такими скромными габаритами, что его можно спокойно поставить в биологический шкаф для обеспечения стерильной среды в процессе печати (фото Organovo).

Этот принтер обладает двумя печатающими головками. Одна заправляется целевыми «красками» (человеческие клетки печени, почек, стромальные клетки и так далее), вторая — вспомогательными материалами (поддерживающий гидрогель, коллаген, факторы роста).

Особая гордость австралийских инженеров — лазерная калибровочная система и роботизированная система позиционирования головок, точность которой составляет считанные микрометры. Это очень важно для размещения клеток в правильном положении.

Перед нами первый в мире именно серийный биопринтер, ведь уже в ближайшее время Invetech намерена поставить ещё несколько таких же аппаратов для Organovo, а она уже займётся распространением новинки в научном сообществе. Первые образцы 3D-биопринтера от Organovo и Invetech будут доступны для исследовательских и медицинских организаций в 2010 году.

Выбор редакции
Что такое Укрепрайоны? Укрепрайоны – новый игровой режим для клановых игроков. Он доступен в клиенте игры и никак не связан с Мировой...

Прохождение игры - Страница 1 Прохождение и сейвы для русской версии игры Управление Управление в игре стандартное, при помощи мыши....

Как забраться на плато, чтобы обыскать упавший вертолет?- Только через аномалию в сгоревшей деревне. Есть возможность это сделать через...

Логин супер-администратора: admin , пароль: 12345 . После установки по умолчанию в системе уже имеется один зарегистрированный...
Вот, наконец, и вышло долгожданное продолжение игры под названием Metro Last Light . Игра как и прежде славится крутостью, однако...
Молл на Алиэкспресс является отдельным разделом. Такой раздел помогает уберечься от некачественных покупок и сотрудничества с...
Aliexpress является своего рода «супермаркетом в Интернете», поскольку в нем представлен огромный ассортимент вещей. Все единицы...
С появлением строительства в Fallout 4 появилось очень много споров на тему необходимости этого занятия. Но, как по мне, это сильно...
Качество фильмов – важнейший критерий по которому все выбирают какие раздачи скачивать, но не всегда понимают из каких источников сделана...