Какой пробег у марсохода кьюриосити. Марсоход Curiosity


  • ChemCam представляет собой набор инструментов для проведения дистанционного химического анализа различных образцов. Работа проходит следующим образом: лазер проводит серию выстрелов по исследуемому объекту. Затем проводится анализ спектра света, который излучила испарившаяся порода. ChemCam может изучать объекты, расположенные на расстоянии до 7 метров от него. Стоимость прибора составила около 10 миллионов долларов (перерасход 1.5 млн. долл.). В штатном режиме фокусировка лазера на объекте проходит автоматически.
  • MastCam: система состоящая из двух камер, и содержит множество спектральных фильтров. Возможно получение снимков в естественных цветах размером 1600 × 1200 пикселей. Видео с разрешением 720p (1280 × 720) снимается с частотой до 10 кадров в секунду и аппаратно сжимается. Первая камера — Medium Angle Camera (MAC), имеет фокусное расстояние в 34 мм и 15 градусное поле зрения, 1 пиксель равен 22 см при расстоянии 1 км.
  • Narrow Angle Camera (NAC), имеет фокусное расстояние в 100 мм, 5.1 градусное поле зрения, 1 пиксель равен 7,4 см при расстоянии 1 км. Каждая камера имеет по 8 Гб флеш-памяти, которая способна хранить более 5500 необработанных изображений; имеется поддержка JPEG-сжатия и сжатия без потери качества. В камерах есть функция автоматической фокусировки, которая позволяет им сфокусироваться на объектах, от 2,1 м до бесконечности. Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось. Каждая камера имеет встроенный фильтр Байера RGB и по 8 переключаемых ИК-фильтров. По сравнению с панорамной камерой, которая стоит на Спирите и Оппортьюнити (MER) и получает чёрно-белые изображения размером 1024 × 1024 пикселя, камера MAC MastCam имеет угловое разрешение в 1,25 раза выше, а камера NAC MastCam — в 3,67 раза выше.
  • Mars Hand Lens Imager (MAHLI): Система состоит из камеры, закреплённой на роботизированной «руке» марсохода, используется для получения микроскопических изображений горных пород и грунта. MAHLI может снять изображение размером 1600 × 1200 пикселей и с разрешением до 14,5 мкм на пиксель. MAHLI имеет фокусное расстояние от 18,3 мм до 21,3 мм и поле зрения от 33,8 до 38,5 градусов. MAHLI имеет как белую, так и ультрафиолетовую светодиодную подсветку для работы в темноте или с использованием флуоресцентной подсветки. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода. MAHLI фокусируется на объектах от 1 мм. Система может сделать несколько изображений с акцентом на обработку снимка. MAHLI может сохранить необработанное фото без потери качества или же сделать сжатие JPEG файла.
  • MSL Mars Descent Imager (MARDI): Во время спуска на поверхность Марса, MARDI передавал цветное изображение размером 1600 × 1200 пикселей со временем экспозиции в 1,3 мс, камера начала съёмку с расстояния 3,7 км и закончила на расстояния 5 метров от поверхности Марса, снимала цветное изображение с частотой 5 кадров в секунду, съёмка продлилась около 2-ух минут. 1 пиксель равен 1,5 метра на расстоянии 2 км, и 1,5 мм на расстоянии 2 метра, угол обзора камеры — 90 градусов. MARDI содержит 8 Гб встроенной памяти, которая может хранить более 4000 фотографий. Снимки с камеры позволили увидеть окружающий рельеф на месте посадки. JunoCam, построенная для космического аппарата Juno, основана на технологии MARDI.
  • Alpha-particle X-ray spectrometer (APXS): Это устройство будет облучать альфа-частицами и сопоставлять спектры в рентгеновских лучах для определения элементного состава породы. APXS является формой Particle-Induced X-ray Emission (PIXE), который ранее использовался в Mars Pathfinder и Mars Exploration Rovers. APXS был разработан Канадским космическим агентством. MacDonald Dettwiler (MDA) — Аэрокосмическая канадская компания, которая строит Canadarm и RADARSAT, несут ответственность за проектирование и строительство APXS. Команда по разработке APXS включает в себя членов из Университета Гвельфов, Университета Нью-Брансуик, Университета Западного Онтарио, НАСА, Университет Калифорнии, Сан-Диего и Корнельского университета.
  • Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA): CHIMRA представляет собой ковш 4х7 сантиметров, который зачерпывает грунт. Во внутренних полостях CHIMRA он просеивается через сито с ячейкой 150 микрон, чему помогает работа вибромеханизма, лишнее удаляется, а на просеивание отправляется следующая порция. Всего проходит три этапа забора из ковша и просеивания грунта. В результате остается немного порошка необходимой фракции, который и отправляется в грунтоприемник, на теле ровера, а лишнее выбрасывается. В итоге из всего ковша на анализ поступает слой грунта в 1 мм. Подготовленный порошок изучают приборы CheMin и SAM.
  • CheMin: Chemin исследует химический и минералогический состав, с помощью рентгеновского флуоресцентного инструмента и рентгеновской дифракции. CheMin является одним из четырёх спектрометров. CheMin позволяет определить обилие полезных ископаемых на Марсе. Инструмент был разработан Дэвидом Блейком в Ames Research Center НАСА и Jet Propulsion Laboratory НАСА. Марсоход будет бурить горные породы, а полученный порошок будет собран инструментом. Затем рентгеновские лучи, будут направлены на порошок, внутренняя кристаллическая структура полезных ископаемых отразится на дифракционной картине лучей. Дифракция рентгеновских лучей различна для разных минералов, поэтому картина дифракции позволит учёным определить структуру вещества. Информацию о светимости атомов и дифракционную картину будет снимать специально подготовленная E2V CCD-224 матрица размером 600х600 пикселей. У Кьюриосити имеется 27 ячеек для анализа образцов, после изучения одного образца ячейка может быть переиспользована, но анализ проводимый над ней будет иметь меньшую точность из-за загрязнения предыдущим образцом. Таким образом у ровера есть всего 27 попыток для полноценного изучения образцов. Ещё 5 запаянных ячеек хранят образцы с Земли. Они нужны чтобы протестировать работоспособность прибора в марсианских условиях. Для работы прибора нужна температура −60 градусов Цельсия, иначе будут мешать помехи от прибора DAN.
  • Sample Analysis at Mars (SAM): Набор инструментов SAM будет анализировать твёрдые образцы, органические вещества и состав атмосферы. Инструмент был разработан: Goddard Space Flight Center, Лаборатория Inter-Universitaire, Французскими CNRS и Honeybee Robotics, наряду со многими другими партнёрами.
  • Radiation assessment detector (RAD), «Детектор оценки радиации»: Этот прибор собирает данные для оценки уровня радиационного фона, который будет воздействовать на участников будущих экспедиций к Марсу. Прибор установлен практически в самом «сердце» ровера, и тем самым имитирует астронавта, находящегося внутри космического корабля. RAD был включен первым из научнах инструментов для MSL, ещё на околоземной орбите, и фиксировал радиационный фон внутри аппарата — а затем и внутри ровера во время его работы на поверхности Марса. Он собирает данные об интенсивности облучения двух типов: высокоэнергетических галактических лучей и частиц, испускаемых Солнцем. RAD был разработан в Германии Юго-западным исследовательским институтом (SwRI) внеземной физики в группе Christian-Albrechts-Universität zu Kiel при финансовой поддержке управления Exploration Systems Mission в штаб-квартире НАСА и Германии.
  • Dynamic Albedo of Neutrons (DAN): «Динамическое альбедо нейтронов» (ДАН) используется для обнаружения водорода, водяного льда вблизи поверхности Марса, предоставлен Федеральным Космическим Агентством (Роскосмос). Является совместной разработкой НИИ автоматики им. Н. Л. Духова при «Росатоме» (импульсный нейтронный генератор), Института космических исследований РАН (блок детектирования) и Объединённого института ядерных исследований (калибровка). Стоимость разработки прибора составила около 100 млн рублей. Фото прибора. В состав прибора входят импульсный источник нейтронов и приемник нейтронного излучения. Генератор испускает в сторону марсианской поверхности короткие, мощные импульсы нейтронов. Продолжительность импульса составляет около 1 мкс, мощность потока — до 10 млн нейтронов с энергией 14 МэВ за один импульс. Частицы проникают в грунт Марса на глубину до 1 м, где взаимодействуют с ядрами основных породообразующих элементов, в результате чего, замедляются и частично поглощаются. Оставшаяся часть нейтронов отражается и регистрируется приемником. Точные измерения возможны до глубины 50 - 70 см. Помимо активного обследования поверхности Красной планеты, прибор способен вести мониторинг естественного радиационного фона поверхности (пассивное обследование).
  • Rover environmental monitoring station (REMS): Комплект метеорологических приборов и ультрафиолетовый датчик предоставило Испанское Министерство Образования и Науки. Исследовательская группа во главе с Хавьером Гомес-Эльвира, Центра Астробиологии (Мадрид) включает Финский Метеорологический институт в качестве партнёра. Установили её на мачту камеры для измерения атмосферного давления, влажности, направления ветра, воздушных и наземных температур, ультрафиолетового излучения. Все датчики расположены в трёх частях: две стрелы присоединены к марсоходу, Remote Sensing Mast (RSM), Ultraviolet Sensor (UVS) находится на верхней мачте марсохода, и Instrument Control Unit (ICU) внутри корпуса. REMS даст новые представления о местном гидрологическом состоянии, о разрушительном влиянии ультрафиолетового излучения, о подземной жизни.
  • MSL entry descent and landing instrumentation (MEDLI): Основной целью MEDLI является изучение атмосферной среды. После замедления спускаемого аппарата с марсоходом в плотных слоях атмосферы теплозащитный экран отделился — в этот период были собраны необходимые данные о марсианской атмосфере. Эти данные будут использованы в будущих миссиях, дав возможность определить параметры атмосферы. Также их возможно использовать для изменения конструкции спускаемого аппарата в будущих миссиях на Марс. MEDLI состоит из трёх основных приборов: MEDLI Integrated Sensor Plugs (MISP), Mars Entry Atmospheric Data System (MEADS) и Sensor Support Electronics (SSE).
  • Hazard avoidance cameras (Hazcams): Марсоход имеет две пары чёрно-белых навигационных камеры, расположенных по бокам аппарата. Они используются для избежания опасности во время передвижения марсохода и для безопасного наведения манипулятора на камни и почву. Камеры делают 3D изображения (поле зрения каждой камеры — 120 градусов), составляют карту местности впереди марсохода. Составленные карты позволяют марсоходу избежать случайных столкновений и используются программным обеспечением аппарата для выбора необходимого пути преодоления препятствий.
  • Navigation cameras (Navcams): Для навигации марсоход использует пару чёрно-белых камер, которые установлены на мачте для слежения за передвижением марсохода. Камеры имеют 45 градусное поле зрения, делают 3D изображения. Их разрешение позволяет видеть объект размером в 2 сантиметра с расстояния 25 метров.

Марсоход «Кьюриосити» (с англ. «Любопытство») приземлился в рамках миссии NASA Mars Science Laboratory в 2012 году на Марс. Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Задача аппарата -за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели. За несколько лет своей работы марсоход предоставил много интересных данных и сделал множество живописных снимков Красной планеты.

Специалисты, изучающие феномен НЛО, подозревают американское аэрокосмическое агентство NASA в обмане века. На одном из снимков, недавно полученном с поверхности Красной планеты марсоходом « » в объектив камеры попал какой-то странный летающий объект. По форме он напоминает летящего орла. Неужели NASA действительно нас обманывает, или у кого-то просто очень сильное воображение?

Диаметр кратера - свыше 150 километров, в центре располагается конус осадочных пород высотой 5,5 километров - гора Шарпа. Желтой точкой отмечено место посадки марсохода Curiosity - Bradbury Landing (Посадка Брэдбери)


Космический аппарат опустился почти в центре заданного эллипса недалеко от Aeolis Mons (Эолида, гора Шарпа) - главной научной цели миссии.

Путь Curiosity в кратере Гейла (6.08.2012 посадка - 1.08.2018, Sol 2128)

На маршруте отмечены основные участки научных работ. Белая линия - южная граница эллипса посадки. За шесть лет марсоход проехал около 20 км и прислал свыше 400 тыс. фотоснимков Красной планеты

Curiosity собрал образцы "подземного" грунта на 16 участках

(по данным NASA/JPL)

Марсоход Curiosity на хребте Веры Рубин (Vera Rubin Ridge)

С высоты хорошо видны район выветренных холмов Murray Buttes, темные пески Bagnold Dunes и равнина Aeolis Palus (Эолидское болото) перед северным валом кратера Гейла. Высокий пик стенки кратера справа снимка находится на расстоянии около 31.5 км от марсохода, а его высота составляет ~ 1200 метров
Восемь основных задач Марсианской научной лаборатории:
1.Обнаружить и установить природу марсианских органических углеродных соединений.
2.Обнаружить вещества, необходимые для существования жизни: углерод, водород,
азот, кислород, фосфор, серу.
3.Обнаружить следы возможных биологических процессов.
4.Определить химический состав марсианской поверхности.
5.Установить процесс формирования марсианских камней и почвы.
6.Оценить процесс эволюции марсианской атмосферы в долгосрочном периоде.
7.Определить текущее состояние, распределение и круговорот воды и углекислого газа.
8.Установить спектр радиоактивного излучения поверхности Марса.

Свою главную задачу - поиск условий, благоприятных когда-либо для обитания микроорганизмов - Curiosity выполнил, исследовав высохшее русло древней марсианской реки в низине . Марсоход обнаружил веские доказательства того, что на этом месте было древнее озеро и оно было пригодно для поддержания простейших форм жизни.

Марсоход Curiosity в Yellowknife Bay

На горизонте возвышается величественная гора Шарпа ( Aeolis Mons, Эолида)

(NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer)

Другими важными результатами являются:
- Оценка естественного уровня радиации во время полета на Марс и на марсианской поверхности; эта оценка необходима для создания радиационной защиты пилотируемого полета на Марс

( )

- Измерение отношения тяжелых и легких изотопов химических элементов в марсианской атмосфере. Это исследование показало, что большая часть первичной атмосферы Марса рассеялась в космосе путем утраты легких атомов из верхних слоев газовой оболочки планеты ( )

Первое измерение возраста горных пород на Марсе и оценка времени их разрушения непосредственно на поверхности под действием космической радиации. Эта оценка позволит выяснить временные рамки водного прошлого планеты, а также темпы разрушения древней органики в камнях и почве Марса

Ц ентральная насыпь кратера Гейла - гора Шарпа - была сформирована из слоистых отложений осадочных пород в древнем озере на протяжении десятков миллионов лет

Марсоход обнаружил десятикратное увеличение содержания метана в атмосфере Красной планеты и отыскал органические молекулы в пробах грунта

Марсоход Curiosity на южной границе эллипса посадки 27 июня 2014 года, Sol 672

(Снимок камеры HiRISE орбитального зонда Mars Reconnaissance Orbiter)

С сентября 2014 года по март 2015 марсоход исследовал холмистую возвышенность "Pahrump Hills" (Парампские Холмы). По мнению планетологов, она представляет собой выход коренных пород центральной горы кратера Гейла и геологически не относится к поверхности его дна. С этого времени Curiosity приступил к изучению горы Шарпа.

Вид на возвышенность "Pahrump Hills"

Отмечены места бурения плиток "Confidence Hills" ,"Mojave 2" и "Telegraph Peak". На заднем плане слева видны склоны горы Шарпа, вверху - обнажения горных пород Whale Rock, Salsberry Peak и Newspaper Rock. Вскоре MSL отправился к более высоким склонам горы Шарпа через ложбину под названием "Artist"s Drive"

(NASA/JPL)

Камера высокого разрешения HiRISE орбитального зонда Mars Reconnaissance Orbiter увидела ровер 8 апреля 2015 года с высоты 299 км.

Север сверху. Изображение охватывает область шириной около 500 метров. Светлые участки рельефа - осадочные горные породы, темные - покрыты песком

(NASA/JPL-Caltech/Univ. of Arizona)

Ровер постоянно проводит съемку местности и некоторых объектов на ней, осуществляет мониторинг окружающей среды инструментами . Навигационные камеры присматриваются и к небу в поисках облаков.

Автопортрет в окрестностях ложбины Marias Pass

31 июля 2015 года Curiosity побурил каменистую плитку "Buckskin" на участке осадочных пород с необычно высоким содержанием кремнезема. Такой тип породы впервые встретился Марсианской научной лаборатории (MSL) за три года пребывания в кратере Гейла. Взяв пробу грунта, ровер продолжил путь к горе Шарпа

(NASA/JPL)

Марсоход Curiosity у бархана Namib Dune

Крутой склон подветренной стороны Namib Dune поднимается под углом 28 градусов на высоту 5 метров. На горизонте виден северо - западный вал кратера Гейла

Номинальный технический срок эксплуатации аппарата - два земных года - 23 июня 2014 года на Sol-668, но Curiosity находится в хорошем состоянии и успешно продолжает исследования марсианской поверхности

Слоистые холмы на склонах Эолиды, таящие геологическую историю марсианского кратера Гейла и следы изменений окружающей среды Красной планеты, - будущее место работы Curiosity

Научная лаборатория под названием «Кьюриосити» была создана с целью изучения поверхности и структуры Марса. Марсоход оснащен химической лабораторией, помогающей ему выполнять полный анализ почвенных компонентов марсианской земли. Запуск марсохода состоялся в ноябре 2011 года. Его полет длился немного меньше года. На поверхность Марса «Кьюриосити» приземлился 6 августа 2012. В его задачах стоит изучение атмосферы, геологии, почв Марса и подготовка человека к высадке на поверхность. Какие еще мы знаем интересные факты о марсоходе Curiosity ?

  1. С помощью 3 пар колес, диаметром по 51 см, ровер беспрепятственно перемещается по поверхности Марса . Два задних и передних колеса регулируются поворотными электрическими моторами, что позволяет совершать поворот на месте, и преодолевать препятствия высотой до 80 см.
  2. Зонд исследует планету с помощью десятка научных инструментов . Приборы обнаруживают органический материал, изучают их в лаборатории, установленной на марсоходе, исследуют грунт. Специальный лазер очищает минералы от различных наслоений. Также «Curiosity» снабжен 1,8-метровой роботизированной рукой с лопатой и буром. С ее помощью, зонд собирает и изучает материал, находясь за 10м до него.
  3. «Кьюриосити» весит 900кг и имеет на своем борту научного оснащения в 10 раз больше и мощнее, чем у остальных созданных марсоходов . С помощью мини-взрывов, производимых при сборе почвы, молекулы разрушаются, сохраняя только атомы. Это помогает более детально изучить состав. Другой лазер сканирует слои земли, создавая трехмерную модель планеты. Таким образом, показывая ученым, как менялась поверхность Марса в течение миллионов лет.
  4. «Curiosity» оснащен комплексом из 17 камер . До этого момента марсоходы передавали только фотографии, а теперь мы получаем и видео материал. Видеокамеры ведут съемку в HD по 10 кадров в секунду. На данный момент, весь материал хранится в памяти зонда, т.к скорость передачи информации на Землю очень мала. Но когда над ним пролетает один из орбитальных спутников, Curiosity сбрасывает ему все, что записал за сутки, а тот уже передает это на Землю.
  5. На Кьюриосити и ракете, что запустила его на Марс, установлены двигатели и некоторые приборы российского производства . Этот прибор называется детектором отраженных нейтронов, и облучает поверхность земли на глубину в 1 метр, выпускает вглубь молекул почвы нейтроны и собирает их отраженную часть, для более досконального изучения.
  6. Местом для посадки марсохода выбрали кратер, названный в честь австралийского ученого Вальтера Гейла . В отличии от остальных кратеров, кратер Гейла имеет низко расположенное дно, по отношению к местности. Кратер имеет диаметр в 150 км, и в его центре находится гора. Это случилось из-за того, что при падении метеорита, сначала он создал воронку, а затем вещество, вернувшееся на место, несло за собой волну, которая в свою очередь и создало наслоение пород. Благодаря такому «чуду природы», зондам не требуется копать глубоко вниз, все слои находятся в открытом доступе.
  7. Curiosity питается ядерной энергией . В отличии от других марсоходов (Spirit, Opportunity), Curiosity снабжен радиоизотопным генератором. По сравнению с солнечными батареями, генератор удобен и практичен. Ни песчаная буря, ни что другое, не станет помехой в работе.
  8. Ученые из NASA говорят, что зонд только ищет наличие форм жизни на планете . Они не хотят в последующем обнаружить занесенный материал. Поэтому, работая над марсоходом, специалисты надевали защитные костюмы, и находились в изолированном помещении. Если все же жизнь на Марсе будет обнаружена, NASA гарантирует, что обнародует новость общественности.
  9. Процессор компьютера на марсоходе не обладает высокой мощностью . Но для астронавтов это не так важно, важна стабильность и испытания временем. Ко всему прочему процессор работает в условиях высокого уровня радиации, и это отражается на его устройстве. Весь софт «Кьюриосити» выполнен на языке Си. Отсутствие объектных конструкций уберегает от большинства ошибок. В целом, программирование зонда ничем не отличается от любого другого.
  10. Связь с Землей поддерживается с помощью сантиметровой антенны, выдающая скорость передачи данных до 10 Кбит/сек . А спутники, которым марсоход передает информацию, имеют скорость до 250 Мбит.
  11. Камера Curiosity имеет фокусное расстояние 34мм и диафрагму f/8 . Вместе с процессором, камера считается устаревшей, т.к ее разрешение не превышает 2 Мп. Проектировка Кьюриосити началась в 2004г, и для того времени камера считалась достаточно хорошей. Марсоход делает несколько одинаковых снимков разной выдержки, тем самым улучшая их качество. Кроме съемки марскианских пейзажей, Curiosity делает фотографии Земли и звездного неба.
  12. Curiosity рисует колесами . На гусеницах марсохода расположены несимметричные прорези. Каждый из трех колес повторяется, образуя код из азбуки Морзе. В переводе, получается аббревиатура JPL - Jet Propulsion Laboratory (одна из лабораторий NASA, работавших над созданием Кьюриосити). В отличии от следов, оставленных астронавтами на Луне, на Марсе они останутся не долго благодаря песчаным бурям.
  13. Curiosity обнаружил молекулы водорода, кислорода, серы, азота, углерода и метана . Ученые считают, что на месте нахождения элементов раньше находилось озеро или река. Пока никаких органических останков обнаружено не было.
  14. Толщина колес Кьюриосити всего 75 мм . Из-за каменистой местности марсоход сталкивается с проблемами с износом колес. Не смотря на повреждения, он продолжает работу. По данным, запасные части ему доставит Space X через четыре года.
  15. Благодаря химическим исследованиям Curiosity, было обнаружено, что на Марсе существует четыре сезона . Но в отличии от Земных явлений, на Марсе они не постоянны. Как например, было зафиксирован высокий уровень метана, однако через год ничего не изменилось. Также была обнаружена аномалия в районе приземления марсохода. Температура в кратере Гейл может изменяться с -100 до +109 за несколько часов. Объяснения этому ученые пока не нашли.

Автопортрет «Кьюриосити»

Марсианская научная лаборатория (МНЛ) (Mars Science Laboratory , сокр. MSL ), «Марс сайенс лэборатори» - миссия НАСА , в ходе выполнения которой на был успешно доставлен и эксплуатируется третьего поколения «Кьюриосити» (Curiosity , - любопытство, любознательность ). Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Аппарат должен будет за несколько месяцев пройти от 5 до20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели.

Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. Предполагаемый срок службы на Марсе - один марсианский год (686 земных суток).

MSL - часть долговременной программы НАСА по исследованию Марса роботизированными зондами Mars Exploration Program. В проекте, помимо НАСА, участвуют также Калифорнийский технологический институт и Лаборатория реактивного движения. Руководитель проекта - Дуг Маккистион (Doug McCuistion), сотрудник НАСА из отдела изучения других планет.Полная стоимость проекта MSL составляет примерно 2,5 миллиарда долларов.

Специалисты американского космического агентства НАСА решили отправить марсоход в кратер Гейла. В огромной воронке хорошо просматриваются глубинные слои марсианского грунта, раскрывающие геологическую историю красной планеты.

Название «Кьюриосити» было выбрано в 2009 году среди вариантов, предложенных школьниками, путём голосования в сети Интернет. Среди других вариантов были Adventure («Приключение»), Amelia , Journey («Путешествие»),Perception («Восприятие»), Pursuit («Стремление»), Sunrise («Восход»), Vision («Ви́дение»), Wonder («Чудо»).

История

Космический аппарат в собранном виде.

В апреле 2004 года НАСА начало отбор предложений по оснащению нового марсохода научным оборудованием, и 14 декабря 2004 года было принято решение об отборе восьми предложений. В конце того же года началась разработка и испытания составных частей системы, включая разработку однокомпонентного двигателя производства компании Aerojet, который способен выдавать тягу в диапазоне от 15 до 100 % от максимальной при постоянном давлении наддува.

Создание всех компонентов марсохода было завершено к ноябрю 2008 года, причём большая часть инструментов и программного обеспечения MSL продолжало испытываться. Перерасход бюджета миссии составил около 400 миллионов долларов. В следующем месяце НАСА отложило запуск MSL на конец 2011 года из-за недостатка времени для испытаний.

С 23 по 29 марта 2009 года на сайте НАСА проводилось голосование по выбору названия для марсохода, на выбор было дано 9 слов. 27 мая 2009 года победителем было объявлено слово «Кьюриосити». Оно было предложено шестиклассницей из Канзаса Кларой Ма.

Марсоход был запущен ракетой “Атлас-5” с мыса Канаверал 26 ноября 2011 года. 11 января 2012 года был проведён специальный манёвр, который эксперты называют «самым важным» для марсохода. В результате совершённого манёвра аппарат взял курс, который привёл его в оптимальную точку для десантирования на поверхность Марса.

28 июля 2012 года была проведена четвёртая небольшая коррекция траектории, двигатели включили всего на шесть секунд. Операция прошла настолько успешно, что финальная коррекция, изначально намеченная на 3 августа, не потребовалась.

Посадка произошла успешно 6 августа 2012 года, в 05:17 UTC. Радиосигнал, сообщающий об успешной посадке марсохода на поверхность Марса, достиг в 05:32 UTC.

Задачи и цели миссии

29 июня 2010 года инженеры из Лаборатории Реактивного Движения собрали «Кьюриосити» в большом чистом помещении, в рамках подготовки к запуску марсохода в конце 2011 года.

MSL имеет четыре основных цели:

  • установить, существовали ли когда-либо условия, подходящие для существования жизни на Марсе;
  • получить подробные сведения о климате Марса;
  • получить подробные сведения о геологии Марса;
  • провести подготовку к высадке человека на Марсе.

Для достижения этих целей перед MSL поставлено шесть основных задач:

  • определить минералогический состав марсианских почв и припочвенных геологических материалов;
  • попытаться обнаружить следы возможного протекания биологических процессов - по элементам, являющимся основой жизни, какой она известна землянам: (углерод, водород, азот, кислород, фосфор, серу);
  • установить процессы, в которых формировались марсианские камни и почвы;
  • оценить процесс эволюции марсианской атмосферы в долгосрочном периоде;
  • определить текущее состояние, распределение и круговорот воды и углекислого газа;
  • установить спектр радиоактивного излучения поверхности Марса.

Также в рамках исследований измерялось воздействие космической радиации на компоненты во время перелёта к Марсу. Эти данные помогут оценить уровни радиации, ожидающие людей в пилотируемой экспедиции на Марс.

Состав

Перелётный
модуль
Модуль управляет траекторией Mars Science Laboratory во время полёта с Земли на Марс. Также включает в себя компоненты для поддержки связи во время полёта и регулирования температуры. Перед входом в атмосферу Марса происходит разделение перелетного модуля и спускаемого аппарата.
Тыльная часть
капсулы
Капсула необходима для спуска через атмосферу. Она защищает марсоход от влияния космического пространства и перегрузок во время входа в атмосферу Марса. В тыльной части находится контейнер для парашюта. Рядом с контейнером установлено несколько антенн связи.
«Небесный кран» После того, как теплозащитный экран и тыльная часть капсула выполнят свою задачу, они расстыковываются, тем самым освобождая путь для спуска аппарата и позволяя радару определить место посадки. После расстыковки кран обеспечивает точный и плавный спуск марсохода на поверхность Марса, который достигается за счёт использования реактивных двигателей и контролируется с помощью радиолокатора на марсоходе.
Марсоход «Кьюриосити» Марсоход под названием «Кьюриосити», содержит все научные приборы, а также важные системы связи и энергоснабжения. Во время полёта шасси складывается для экономии места.
Лобовая часть
капсулы с
теплозащитным экраном
Теплозащитный экран защищает марсоход от крайне высокой температуры, воздействующей на спускаемый аппарат при торможении в атмосфере Марса.
Спускаемый аппарат Масса спускаемого аппарата (изображён в сборе с перелётным модулем) составляет 3,3 тонны. Спускаемый аппарат служит для контролируемого безопасного снижения марсохода при торможении в марсианской атмосфере и мягкой посадки марсохода на поверхность.

Технология полёта и посадки

Перелётный модуль готов к испытанию. Обратите внимание на часть капсулы снизу, в этой части находится радиолокатор, а на самом верху - солнечные батареи.

Траекторию движения Mars Science Laboratory от Земли до Марса контролировал перелётный модуль, соединённый с капсулой. Силовым элементом конструкции перелётного модуля была кольцевая ферма диаметром 4 метра, из алюминиевого сплава, укреплённая несколькими стабилизирующими стойками. На поверхности перелётного модуля были установлены 12 панелей , подключённых к системе энергоснабжения. К концу полёта, перед входом капсулы в атмосферу Марса, они вырабатывали около 1 кВт электрической энергии с КПД порядка 28,5 %. Для проведения энергоемких операций были предусмотрены литий-ионные аккумуляторы. Кроме того, система электропитания перелётного модуля, батареи спускаемого модуля и энергосистема «Кьюриосити» имели взаимные соединения, что позволяло перенаправить потоки энергии в случае возникновения неисправностей.

Ориентация космического аппарата в пространстве определялась при помощи звёздного датчика и одного из двух солнечных датчиков. Звёздный датчик наблюдал за несколькими выбранными для навигации звёздами; солнечный датчик использовал в качестве опорной точки . Эта система была спроектирована с резервированием для повышения надёжности миссии. Для коррекции траектории применялись 8 двигателей, работающих на гидразине, запас которого содержался в двух сферических титановых баках.

Выбор редакции
ГТА – очень большой проект, который дает даже не профессиональным людям возможность создать что-то свое на уже существующей платформе. К...

Как вводить коды: Коды для GTA San Andreas внедрены разработчиками ГТА для быстрого получения преимущества в игре или активации...

Виртуальная реальность и VR игры начинают формировать новую игровую среду для пользователей Android. Но, так как это новое поле для...

10.08.2016 Frenk 0 Коментариев Обновление Windows 10 могут быть разными 10041, 9860, 1511, 10586 – в будущем скорее всего...
Итак, наконец-то у вас есть мобильное зарядное устройство (Power Bank) . Поздравляем! Купить Power Bank в Украине - очень правильное...
Онлайн-игры в последнее время набирают все большую популярность, особенно те, что предоставляют своим игрокам огромные возможности по...
Если когда-либо в мир гитарной музыки приходил настоящий гений, то его имя Джеймс Маршалл Хендрикс, известный всему миру как Джими...
Для однозначного определения положения точки в пространстве необходимо и достаточно иметь проекции на двух плоскостях проекций, но в...
Блок-схема представляет последовательные этапы задачи или процесса. Существует много разных макетов SmartArt, которые можно использовать...